Category Archives: tools

Test-retest reliability assessment using graphical methods

UPDATE (2018-05-17): as explained in the now updated previous post, the shift function for pairwise differences, originally described as a great tool to assess test-retest reliability, is completely flawed. The approach using scatterplots remains valid. If you know of other graphical methods, please leave a comment.


Test-retest reliability is often summarised using a correlation coefficient, often without illustrating the raw data. This is a very bad idea given that the same correlation coefficient can result from many different configurations of observations. Graphical representations are thus essential to assess test-retest reliability, as demonstrated for instance in the work of Bland & Altman.

The R code for this post is on github.

Example 1: made up data

Let’s look at a first example using made up data. Imagine that reaction times were measured from 100 participants in two sessions. The medians of the two distributions do not differ much, but the shapes do differ a lot, similarly to the example covered in the previous post.

figure_kde

The kernel density estimates above do not reveal the pairwise associations between observations. This is better done using a scatterplot. In this plot, strong test-retest reliability would show up as a tight cloud of points along the unity line (the black diagonal line).

figure_scatter

Here the observations do not fall on the unity line: instead the relationship leads to a much shallower slope than expected if the test-retest reliability was high. For fast responses in session 1, responses tended to be slower in session 2. Conversely, for slow responses in condition 1, responses tended to be faster in condition 2. This pattern would be expected if there was regression to the mean [wikipedia][ Barnett et al. 2005], that is, particularly fast or particularly slow responses in session 1 were due in part to chance, such that responses from the same individuals in session 2 were closer to the group mean. Here we know this is the case because the data are made up to have that pattern.

We can also use a shift function for dependent group to investigate the relationship between sessions, as we did in the previous post.

figure_sf_dhd

The shift function reveals a characteristic  difference in spread between the two distributions, a pattern that is also expected if there is regression to the mean. Essentially, the shift function shows how  the distribution in session 2 needs to be modified to match the distribution in session 1: the lowest deciles need to be decreased and the highest deciles need to be increased, and these changes should be stronger as we move towards the tails of the distribution. For this example, these changes would be similar to an anti-clockwise rotation of the regression slope in the next figure, to align the cloud of observations with the black diagonal line.  

figure_scatter_regline

To confirm these observations, we also perform a shift function for pairwise differences. 

 

This second type of shift function reveals a pattern very similar to the previous one. In the [previous post], I wrote that this “is re-assuring. But there might be situations where the two versions differ.” Well, here are two such situations…

Example 2: ERP onsets

Here we look at ERP onsets from an object detection task (Bieniek et al. 2016). In that study, 74 of our 120 participants were tested twice, to assess the test-retest reliability of different measurements, including onsets. The distributions of onsets across participants is positively skewed, with a few participants with particularly early or late onsets. The distributions for the two sessions appear quite similar.   

figure_ERP_kde

With these data, we were particularly interested in the reliability of the left and right tails: if early onsets in session 1 were due to chance, we would expect session 2 estimates to be overall larger (shifted to the right); similarly, if late onsets in session 1 were due to chance, we would expect session 2 estimates to be overall smaller (shifted to the left). Plotting session 2 onsets as a function of session 1 onsets does not reveal a strong pattern of regression to the mean as we observed in example 1. 

figure_ERP_scatter1

Adding a loess regression line suggests there might actually be an overall clockwise rotation of the cloud of points relative to the black diagonal.

figure_ERP_scatter1_regline

The pattern is even more apparent if we plot the difference between sessions on the y axis. This is sometimes called a Bland & Altman plot (but here without the SD lines).

figure_ERP_scatter2_regline

However, a shift function on the marginals is relatively flat.

figure_ERP_sf_dhd

Although there seems to be a linear trend, the uncertainty around the differences between deciles is large. In the original paper, we wrote this conclusion (sorry for the awful frequentist statement, I won’t do it again):

“across the 74 participants tested twice, no significant differences were found between any of the onset deciles (Fig. 6C). This last result is important because it demonstrates that test–retest reliability does not depend on onset times. One could have imagined for instance that the earliest onsets might have been obtained by chance, so that a second test would be systematically biased towards longer onsets: our analysis suggests that this was not the case.”

That conclusion was probably wrong, because the shift function for dependent marginals is inappropriate to look at test-retest reliability. Inferences should be made on pairwise differences instead. So, if we use the shift function for pairwise differences, the results are very different! A much better diagnostic tool is to plot difference results as a function of session 1 results. This approach suggests, in our relatively small sample size:

 

  • the earlier the onsets in session 1, the more they increased in session 2, such that the difference between sessions became more negative;
  • the later the onsets in session 1, the more they decreased in session 2, such that the difference between sessions became more positive. 

This result and the discrepancy between the two types of shift functions is very interesting and can be explained by a simple principle: for dependent variables, the difference between 2 means is equal to the mean of the individual pairwise differences; however, this does not have to be the case for other estimators, such as quantiles (Wilcox & Rousselet, 2018).

Also, tThe discrepancy shows that I reached the wrong conclusion in a previous study because I used the wrong analysis. Of course, there is always the possibility that I’ve made a terrible coding mistake somewhere (that won’t be the first time – please let me know if you spot a fatal mistake). So l Let’s look at another example using published clinical data in which regression to the mean was suspected.

Example 3: Nambour skin cancer prevention trial

The data are from a cancer clinical trial described by Barnett et al. (2005). Here is Figure 3 from that paper:

barnett-ije-2005

“Scatter-plot of n = 96 paired and log-transformed betacarotene measurements showing change (log(follow-up) minus log(baseline)) against log(baseline) from the Nambour Skin Cancer Prevention Trial. The solid line represents perfect agreement (no change) and the dotted lines are fitted regression lines for the treatment and placebo groups”

Let’s try to make a similarly looking figure.

figure_nambour_scatter

Unfortunately, the original figure cannot be reproduced because the group membership has been mixed up in the shared dataset… So let’s merge the two groups and plot the data following our shift function convention, in which the difference is session 1 – session 2.

figure_nambour_scatter2

Regression to the mean is suggested by the large number of negative differences and the negative slope of the loess regression: participants with low results in session 1 tended to have higher results in session 2. This pattern can also be revealed by plotting session 2 as a function of session 1.

figure_nambour_scatter3

The shift function for marginals suggests increasing differences between session quantiles for increasing quantiles in session 1.

figure_nambour_sf_dhd

This result seems at odd with the previous plot, but it is easier to understand if we look at the kernel density estimates of the marginals. Thus, plotting difference scores as a function of session 1 scores probably remains the best strategy to have a fine-grained look at test-retest results.

figure_nambour_kde

A shift function for pairwise differences shows a very different pattern, consistent with the regression to the mean suggested by Barnett et al. (2005).

 

Conclusion

To assess test-retest reliability, it is very informative to use graphical representations, which can reveal interesting patterns that would be hidden in a correlation coefficient. Unfortunately, there doesn’t seem to be a magic tool to simultaneously illustrate and make inferences about test-retest reliability.

It seems that the shift function for pairwise differences is an excellent tool to look at test-retest reliability, and to spot patterns of regression to the mean. The next steps for the shift function for pairwise differences will be to perform some statistical validations for the frequentist version, and develop a Bayesian version.

That’s it for this post. If you use the shift function for pairwise differences to look at test-retest reliability, let me know and I’ll add a link here.

References

Barnett, A.G., van der Pols, J.C. & Dobson, A.J. (2005) Regression to the mean: what it is and how to deal with it. Int J Epidemiol, 34, 215-220.

Bland JM, Altman DG. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. Lancet, i, 307-310.

Bieniek, M.M., Bennett, P.J., Sekuler, A.B. & Rousselet, G.A. (2016) A robust and representative lower bound on object processing speed in humans. The European journal of neuroscience, 44, 1804-1814.

Wilcox, R.R. & Rousselet, G.A. (2018) A Guide to Robust Statistical Methods in Neuroscience. Curr Protoc Neurosci, 82, 8 42 41-48 42 30.

Advertisements

A new shift function for dependent groups?

UPDATE (2018-05-17): the method suggested here is completely bogus. I’ve edited the post to explain why. To make inferences about differences scores, use the difference asymmetry function or make inferences about the quantiles of the differences (Rousselet, Pernet & Wilcox, 2017).


The shift function is a graphical and inferential method that allows users to quantify how two distributions differ. It is a frequentist tool that also comes in several Bayesian flavours, and can be applied to independent and dependent groups. The version for dependent groups uses differences between the quantiles of each group. However, for paired observations, it would be also useful to assess the quantiles of the pairwise differences. This is what the this new shift function does was supposed to do.

Let’s consider the fictive reaction time data below, generated using exGaussian distributions (n = 100 participants).

figure_kde

The kernel density estimates suggest interesting differences: condition 1 is overall more spread out than condition 2; as a result, the two distributions differ in both the left (fast participants) and right (slow participants) tails. However, this plot does not reveal the pairwise nature of the observations. This is better illustrated using a scatterplot.

figure_scatter

The scatterplot reveals more clearly the relationship between conditions:
– fast participants, shown in dark blue on the left, tended to be a bit faster in condition 1 than in condition 2;
– slower participants, shown in yellow on the right, tended to be slower in condition 1 than in condition 2;
– this effect seems to be more prominent for participants with responses larger than about 500 ms, with a trend for larger differences with increasing average response latencies.

A shift function can help assess and quantify this pattern. In the shift function below, the x axis shows the deciles in condition 1. The y axis shows the differences between deciles from the two conditions. The difference is reported in the coloured label. The vertical lines show the 95% percentile bootstrap confidence intervals. As we travel from left to right along the x axis, we consider progressively slower participants in condition 1. These slower responses in condition 1 are associated with progressively faster responses in condition 2 (the difference condition 1 – condition 2 increases).

figure_sf_dhd

So here the inferences are made on differences between quantiles of the marginal distributions: for each distribution, we compute quantiles, and then subtract the quantiles.

What if we want to make inferences on the pairwise differences instead? This can be done by computing the quantiles of the differences, and plotting them as a function of the quantiles in one group. A small change in the code gives us a new shift function for dependent groups.

figure_sf_pdhd

The two versions look very similar, which is re-assuring, but does not demonstrate anything (except confirmation bias and wishful thinking on my part). But there might be situations where the two versions differ. Also, the second version makes explicit inferences about the pairwise differences, not about the differences between marginal distributions: so despite the similarities, they afford different conclusions.

Let’s look at the critical example that I should have considered before getting all excited and blogging about the “new method”. A simple negative control demonstrates what is wrong with the approach. Here are two dependent distributions, with a clear shift between the marginals.

figure_kde2

The pairwise relationships are better illustrated using a scatterplot, which shows a seemingly uniform shift between conditions.

figure_scatter2_1

Plotting the pairwise differences as a function of observations in condition 1 confirms the pattern: the differences don’t seem to vary much with the results in condition 1. In other words, differences don’t seem to be particularly larger or smaller for low results in condition 1 relative to high results.

figure_scatter2_2

The shift function on marginals does a great job at capturing the differences, showing a pattern characteristic of stochastic dominance (Speckman, Rouder, Morey & Pratte, 2008): one condition (condition 2) dominates the other at every decile. The differences also appear to be a bit larger for higher than lower deciles in condition 1.

figure_sf_dhd2

The modified shift function, shown next, makes no sense. That’s because the deciles of condition 1 and the deciles of the difference scores necessarily increase from 1 to 9, so plotting one as a function of the other ALWAYS gives a positive slope. The same positive slope I thought was capturing a pattern of regression to the mean! So I fooled myself because I was so eager to find a technique to quantify regression to the mean, and I only used examples that confirmed my expectations (confirmation bias)! This totally blinded me to what in retrospect is a very silly mistake.

figure_sf_pdhd2

Finally, let’s go back to the pattern observed in the previous shift function, where it seemed that the difference scores were increasing from low to high quantiles of condition 1. The presence of this pattern can better be tested using a technique that makes inferences about pairwise differences. One such technique is the difference asymmetry function. The idea from Wilcox (2012, Wilcox & Erceg-Hurn, 2012) goes like this: if two distributions are identical, then the difference scores should be symmetrically distributed around zero. To test for asymmetry, we can estimate sums of lower and higher quantiles; for instance, the sum of quantile 0.05 and quantile 0.95, 0.10 + 0.90, 0.15 + 0.85… For symmetric distributions with a median of zero, these sums should be close to zero, leading to a flat function centred at zero. If for instance the negative differences tend to be larger than the positive differences, the function will start with negative sums and will increase progressively towards zero (see example in Rousselet, Pernet & Wilcox). In our example, the difference asymmetry function is negative and flat, which is characteristic of a uniform shift, without much evidence for an asymmetry. Which is good because that’s how the fake data were generated! So using  graphical representations such as scatterplots, in conjunction with the shift function and the difference asymmetry function, can provide a very detailed and informative account of how two distributions differ.figure_daf2

Conclusion

I got very excited by the new approach because after spending several days thinking about test-retest reliability assessment from a graphical perspective, I thought I had found the perfect tool, as explained in the next post. So the ingredients of my mistake are clear: statistical sloppiness and confirmation bias.

The code for the figures in this post and for the new bogus shift function is available on github. I’ll will not update the rogme package, which implements the otherwise perfectly valid shift functions and difference asymmetry functions.

References

Speckman, P.L., Rouder, J.N., Morey, R.D. & Pratte, M.S. (2008) Delta plots and coherent distribution ordering. Am Stat, 62, 262-266.

Rousselet, G.A., Pernet, C.R. & Wilcox, R.R. (2017) Beyond differences in means: robust graphical methods to compare two groups in neuroscience. The European journal of neuroscience, 46, 1738-1748. [preprint] [reproducibility package]

Wilcox, R.R. (2012) Comparing Two Independent Groups Via a Quantile Generalization of the Wilcoxon-Mann-Whitney Test. Journal of Modern Applied Statistical Methods, 11, 296-302.

Wilcox, R.R. & Erceg-Hurn, D.M. (2012) Comparing two dependent groups via quantiles. J Appl Stat, 39, 2655-2664.

Bias & bootstrap bias correction


The code and a notebook for this post are available on github.

The bootstrap bias correction technique is described in detail in chapter 10 of this classic textbook:

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

A mathematical summary + R code are available here.


In a typical experiment, we draw samples from an unknown population and compute a summary quantity, or sample statistic, which we hope will be close to the true population value. For instance, in a reaction time (RT) experiment, we might want to estimate how long it takes for a given participant to detect a visual stimulus embedded in noise. Now, to get a good estimate of our RTs, we ask our participant to perform a certain number of trials, say 100. Then, we might compute the mean RT, to get a value that summarises the 100 trials. This mean RT is an estimate of the true, population, value. In that case the population would be all the unknowable reaction times that could be generated by the participant, in the same task, in various situations – for instance after x hours of sleep, y cups of coffee, z pints of beer the night before – typically all these co-variates that we do not control. (The same logic applies across participants). So for that one experiment, the mean RT might under-estimate or over-estimate the population mean RT. But if we ask our participant to come to the lab over and over, each time to perform 100 trials, the average of all these sample estimates will converge to the population mean. We say that the sample mean is an unbiased estimator of the population mean. Certain estimators, in certain situations, are however biased: no matter how many experiments we perform, the average of the estimates is systematically off, either above or below the population value.

Let’s say we’re sampling from this very skewed distribution. It is an ex-Gaussian distribution which looks a bit like a reaction time distribution, but could be another skewed quantity – there are plenty to choose from in nature. The mean is 600, the median is 509.

figure.kde.pop.m.md

Now imagine we perform experiments to try to estimate these population values. Let say we take 1,000 samples of 10 observations. For each experiment (sample), we compute the mean. These sample means are shown as grey vertical lines in the next figure. A lot of them fall very near the population mean (black vertical line), but some of them are way off.

figure.kde.1000m

The mean of these estimates is shown with the black dashed vertical line. The difference between the mean of the mean estimates and the population value is called bias. Here bias is small (2.5). Increasing the number of experiments will eventually lead to a bias of zero. In other words, the sample mean is an unbiased estimator of the population mean.

For small sample sizes from skewed distributions, this is not the case for the median. In the example below, the bias is 15.1: the average median across 1,000 experiments over-estimates the population median.

figure.kde.1000md

Increasing sample size to 100 reduces the bias to 0.7 and improves the precision of our estimates. On average, we get closer to the population median, and the distribution of sample medians has much lower variance.

figure.kde.1000md_n100

So bias and measurement precision depend on sample size. Let’s look at sampling distributions as a function of sample size. First, we consider the mean.

The sample mean is not biased

Using our population, let’s do 1000 experiments, in which we take different numbers of samples 1000, 500, 100, 50, 20, 10.

Then, we can illustrate how close all these experiments get to the true (population) value.

figure_sample_mean

As expected, our estimates of the population mean are less and less variable with increasing sample size, and they converge towards the true population value. For small samples, the typical sample mean tends to underestimate the true population value (yellow curve). But despite the skewness of the sampling distribution with small n, the average of the 1000 simulations/experiments is very close to the population value, for all sample sizes:

  • population = 677.8

  • average sample mean for n=10 = 683.8

  • average sample mean for n=20 = 678.3

  • average sample mean for n=50 = 678.1

  • average sample mean for n=100 = 678.7

  • average sample mean for n=500 = 678.0

  • average sample mean for n=1000 = 678.0

The approximation will get closer to the true value with more experiments. With 10,000 experiments of n=10, we get 677.3. The result is very close to the true value. That’s why we say that the sample mean is an unbiased estimator of the population mean.

It remains that with small n, the sample mean tends to underestimate the population mean.

The median of the sampling distribution of the mean in the previous figure is 656.9, which is 21 ms under the population value. A good reminder that small sample sizes lead to bad estimation.

Bias of the median

The sample median is biased when n is small and we sample from skewed distributions:

Miller, J. (1988) A warning about median reaction time. J Exp Psychol Hum Percept Perform, 14, 539-543.

However, the bias can be corrected using the bootstrap. Let’s first look at the sampling distribution of the median for different sample sizes.

figure_sample_median

Doesn’t look too bad, but for small sample sizes, on average the sample median over-estimates the population median:

  • population = 508.7

  • sample mean for n=10 = 522.1

  • sample mean for n=20 = 518.4

  • sample mean for n=50 = 511.5

  • sample mean for n=100 = 508.9

  • sample mean for n=500 = 508.7

  • sample mean for n=1000 = 508.7

Unlike what happened with the mean, the approximation does not get closer to the true value with more experiments. Let’s try 10,000 experiments of n=10:

  • sample mean = 523.9

There is systematic shift between average sample estimates and the population value: thus the sample median is a biased estimate of the population median. Fortunately, this bias can be corrected using the bootstrap.

Bias estimation and bias correction

A simple technique to estimate and correct sampling bias is the percentile bootstrap. If we have a sample of n observations:

  • sample with replacement n observations from our original sample

  • compute the estimate

  • perform steps 1 and 2 nboot times

  • compute the mean of the nboot bootstrap estimates

The difference between the estimate computed using the original sample and the mean of the bootstrap estimates is a bootstrap estimate of bias.

Let’s consider one sample of 10 observations from our skewed distribution. It’s median is: 535.9

The population median is 508.7, so our sample considerably over-estimate the population value.

Next, we sample with replacement from our sample, and compute bootstrap estimates of the median. The distribution obtained is a bootstrap estimate of the sampling distribution of the median. The idea is this: if the bootstrap distribution approximates, on average, the shape of the sampling distribution of the median, then we can use the bootstrap distribution to estimate the bias and correct our sample estimate. However, as we’re going to see, this works on average, in the long run. There is no guarantee for a single experiment.

figure_boot_md

Using the current data, the mean of the bootstrap estimates is  722.8.

Therefore, our estimate of bias is the difference between the mean of the bootstrap estimates and the sample median = 187.

To correct for bias, we subtract the bootstrap bias estimate from the sample estimate:

sample median – (mean of bootstrap estimates – sample median)

which is the same as:

2 x sample median – mean of bootstrap estimates.

Here the bias corrected sample median is 348.6. Quite a drop from 535.9. So the sample bias has been reduced dramatically, clearly too much. But bias is a long run property of an estimator, so let’s look at a few more examples. We take 100 samples of n = 10, and compute a bias correction for each of them. The arrows go from the sample median to the bias corrected sample median. The vertical black line shows the population median.

figure_mdbc_examples

  • population median =  508.7

  • average sample median =  515.1

  • average bias corrected sample median =  498.8

So across these experiments, the bias correction was too strong.

What happens if we perform 1000 experiments, each with n=10, and compute a bias correction for each one? Now the average of the bias corrected median estimates is much closer to the true median.

  • population median =  508.7

  • average sample median =  522.1

  • average bias corrected sample median =  508.6

It works very well!

But that’s not always the case: it depends on the estimator and on the amount of skewness.

I’ll cover median bias correction in more detail in a future post. For now, if you study skewed distributions (most bounded quantities such as time measurements are skewed) and use the median, you should consider correcting for bias. But it’s unclear in which situation to act: clearly, bias decreases with sample size, but with small sample sizes the bias can be poorly estimated, potentially resulting in catastrophic adjustments. Clearly more simulations are needed…

Trimmed means

The R code for this post is on github.

Trimmed means are robust estimators of central tendency. To compute a trimmed mean, we remove a predetermined amount of observations on each side of a distribution, and average the remaining observations. If you think you’re not familiar with trimmed means, you already know one famous member of this family: the median. Indeed, the median is an extreme trimmed mean, in which all observations are removed except one or two.

Using trimmed means confers two advantages:

  • trimmed means provide a better estimation of the location of the bulk of the observations than the mean when sampling from asymmetric distributions;
  • the standard error of the trimmed mean is less affected by outliers and asymmetry than the mean, so that tests using trimmed means can have more power than tests using the mean.

Important point: if we use a trimmed mean in an inferential test (see below), we make inferences about the population trimmed mean, not the population mean. The same is true for the median or any other measure of central tendency. So each robust estimator is a tool to answer a specific question, and this is why different estimators can return different answers…

Here is how we compute a 20% trimmed mean.

Let’s consider a sample of 20 observations:

39 92 75 61 45 87 59 51 87 12  8 93 74 16 32 39 87 12 47 50

First we sort them:

8 12 12 16 32 39 39 45 47 50 51 59 61 74 75 87 87 87 92 93

The number of observations to remove is floor(0.2 * 20) = 4. So we trim 4 observations from each end:

(8 12 12 16) 32 39 39 45 47 50 51 59 61 74 75 87 (87 87 92 93)

And we take the mean of the remaining observations, such that our 20% trimmed mean = mean(c(32,39,39,45,47,50,51,59,61,74,75,87)) = 54.92

Let’s illustrate the trimming process with a normal distribution and 20% trimming:

normdist

We can see how trimming gets rid of the tails of the distribution, to focus on the bulk of the observations. This behaviour is particularly useful when dealing with skewed distributions, as shown here:

fdist

In this skewed distribution (it’s an F distribution), there is more variability on the right side, which appears as stretched compared to the left side. Because we trim the same amount on each side, trimming removes a longer chunk of the distribution on the right side than the left side. As a consequence, the mean of the remaining points is more representative of the location of the bulk of the observations. This can be seen in the following examples.

figure_tm_demo

Panel A shows the kernel density estimate of 100 observations sampled from a standard normal distribution (MCT stands for measure of central tendency). By chance, the distribution is not perfectly symmetric, but the mean, 20% trimmed mean and median give very similar estimates, as expected. In panel B, however, the sample is from a lognormal distribution. Because of the asymmetry of the distribution, the mean is dragged towards the right side of the distribution, away from the bulk of the observations. The 20% trimmed mean is to the left of the mean, and the median further to the left, closer to the location of most observations. Thus, for asymmetric distributions, trimmed means provide more accurate information about central tendency than the mean.

**Q: “By trimming, don’t we loose information?”**

I have heard that question over and over. The answer depends on your goal. Statistical methods are only tools to answer specific questions, so it always depends on your goal. I have never met anyone with a true interest in the mean: the mean is always used, implicitly or explicitly, as a tool to indicate the location of the bulk of the observations. Thus, if your goal is to estimate central tendency, then no, trimming doesn’t discard information, it actually increases the quality of the information about central tendency.

I have also heard that criticism: “I’m interested in the tails of the distributions and that’s why I use the mean, trimming gets rid of them”. Tails certainly have interesting stories to tell, but the mean is absolutely not the tool to study them because it mingles all observations into one value, so we have no way to tell why means differ among samples. If you want to study entire distributions, they are fantastic graphical tools available (Rousselet, Pernet & Wilcox 2017).

Implementation

Base R has trimmed means built in:

mean can be used by changing the trim argument to the desired amount of trimming:

mean(x, trim = 0.2) gives a 20% trimmed mean.

In Matlab, try the tm function available here.

In Python, try the scipy.stats.tmean function. More Python functions are listed here.

Inferences

There are plenty of R functions using trimmed means on Rand Wilcox’s website.

We can use trimmed means instead of means in t-tests. However, the calculation of the standard error is different from the traditional t-test formula. This is because after trimming observations, the remaining observations are no longer independent. The formula for the adjusted standard error was originally proposed by Karen Yuen in 1974, and it involves winsorization. To winsorize a sample, instead of removing observations, we replace them with the remaining extreme values. So in our example, a 20% winsorized sample is:

32 32 32 32 32 39 39 45 47 50 51 59 61 74 75 87 87 87 87 87

Taking the mean of the winsorized sample gives a winsorized mean; taking the variance of the winsorized sample gives a winsorized variance etc. I’ve never seen anyone using winsorized means, however the winsorized variance is used to compute the standard error of the trimmed mean (Yuen 1974). There is also a full mathematical explanation in Wilcox (2012).

You can use all the functions below to make inferences about means too, by setting tr=0. How much trimming to use is an empirical question, depending on the type of distributions you deal with. By default, all functions set tr=0.2, 20% trimming, which has been studied a lot and seems to provide a good compromise. Most functions will return an error with an alternative function suggestion if you set tr=0.5: the standard error calculation is inaccurate for the median and often the only satisfactory solution is to use a percentile bootstrap.

**Q: “With trimmed means, isn’t there a danger of users trying different amounts of trimming and reporting the one that give them significant results?”**

This is indeed a possibility, but dishonesty is a property of the user, not a property of the tool. In fact, trying different amounts of trimming could be very informative about the nature of the effects. Reporting the different results, along with graphical representations, could help provide a more detailed description of the effects.

The Yuen t-test performs better than the t-test on means in many situations. For even better results, Wilcox recommends to use trimmed means with a percentile-t bootstrap or a percentile bootstrap. With small amounts of trimming, the percentile-t bootstrap performs better; with at least 20% trimming, the percentile bootstrap is preferable. Details about these choices are available for instance in Wilcox (2012) and Wilcox & Rousselet (2017).

Yuen’s approach

1-alpha confidence interval for the trimmed mean: trimci(x,tr=.2,alpha=0.05)

Yuen t-test for 2 independent groups: yuen(x,y,tr=.2)

Yuen t-test for 2 dependent groups: yuend(x,y,tr=.2)

Bootstrap percentile-t method

One group: trimcibt(x,tr=.2,alpha=.05,nboot=599)

Two independent groups: yuenbt(x,y,tr=.2,alpha=.05,nboot=599)

Two dependent groups: ydbt(x,y,tr=.2,alpha=.05,nboot=599)

Percentile bootstrap approach

One group: trimpb(x,tr=.2,alpha=.05,nboot=2000)

Two independent groups: trimpb2(x,y,tr=.2,alpha=.05,nboot=2000)

Two dependent groups: dtrimpb(x,y=NULL,alpha=.05,con=0,est=mean)

Matlab

There are some Matlab functions here:

tm – trimmed mean

yuen – t-test for 2 independent groups

yuend – t-test for 2 dependent groups

winvar – winsorized variance

winsample – winsorized sample

wincov – winsorized covariance

These functions can be used with several estimators including  trimmed means:

pb2dg – percentile bootstrap for 2 dependent groups

pb2ig– percentile bootstrap for 2 independent groups

pbci– percentile bootstrap for 1 group

Several functions for trimming large arrays and computing confidence intervals are available in the LIMO EEG toolbox.

References

Karen K. Yuen. The two-sample trimmed t for unequal population variances, Biometrika, Volume 61, Issue 1, 1 April 1974, Pages 165–170, https://doi.org/10.1093/biomet/61.1.165

Rousselet, Guillaume; Pernet, Cyril; Wilcox, Rand (2017): Beyond differences in means: robust graphical methods to compare two groups in neuroscience. figshare. https://doi.org/10.6084/m9.figshare.4055970.v7

Rand R. Wilcox, Guillaume A. Rousselet. A guide to robust statistical methods in neuroscience bioRxiv 151811; doi: https://doi.org/10.1101/151811

Wilcox, R.R. (2012) Introduction to robust estimation and hypothesis testing. Academic Press, San Diego, CA.

A clearer explanation of the shift function

The shift function is a power tool to compare two marginal distributions. It’s covered in detail in this previous post. Below is a new illustration which might help better understand the graphical representation of the shift function. The R code to generate the figure is available in the README of the rogme package.

Panel A illustrates two distributions, both n = 1000, that differ in spread. The observations in the scatterplots were jittered based on their local density, as implemented in ggforce::geom_sina.

Panel B illustrates the same data from panel A. The dark vertical lines mark the deciles of the distributions. The thicker vertical line in each distribution is the median. Between distributions, the matching deciles are joined by coloured lined. If the decile difference between group 1 and group 2 is positive, the line is orange; if it is negative, the line is purple. The values of the differences for deciles 1 and 9 are indicated in the superimposed labels.

Panel C focuses on the portion of the x-axis marked by the grey shaded area at the bottom of panel B. It shows the deciles of group 1 on the x-axis – the same values that are shown for group 1 in panel B. The y-axis shows the differences between deciles: the difference is large and positive for decile 1; it then progressively decreases to reach almost zero for decile 5 (the median); it becomes progressively more negative for higher deciles. Thus, for each decile the shift function illustrates by how much one distribution needs to be shifted to match another one. In our example, we illustrate by how much we need to shift deciles from group 2 to match deciles from group 1.

More generally, a shift function shows quantile differences as a function of quantiles in one group. It estimates how and by how much two distributions differ. It is thus a powerful alternative to the traditional t-test on means, which focuses on only one, non-robust, quantity. Quantiles are robust, intuitive and informative.

figure2

Matlab code for the shift function: a powerful tool to compare two entire marginal distributions

Recently, I presented R code for the shift function, a powerful tool to compare two entire marginal distributions.

The Matlab code is now available on github.

shifthd has the same name as its R version, which was originally programmed by Rand Wilcox and first documented in 1995 (see details ). It computes a shift function for independent groups, using a percentile bootstrap estimation of the SE of the quantiles to compute confidence intervals.

shiftdhd is the version for dependent groups.

More recently, Wilcox introduced a new version of the shift function in which a straightforward percentile bootstrap is used to compute the confidence intervals, without estimation of the SE of the quantiles. This is implemented in Matlab as shifthd_pbci for independent groups (equivalent to qcomhd in R); as shiftdhd_pbci for dependent groups (equivalent to Dqcomhd in R).

A demo file shift_function_demo is available here, along with the function shift_fig and dependencies cmu and UnivarScatter.

For instance, if we use the ozone data covered in the previous shift function post, a call to shifthd looks like this:

[xd, yd, delta, deltaCI] = shifthd(control,ozone,200,1);

producing this figure:

figure1

The output of shifthd, or any of the other 3 sf functions, can be used as input into shift_fig:

shift_fig(xd, yd, delta, deltaCI,control,ozone,1,5);

producing this figure:

figure2

This is obviously work in progress, and shift_fig is meant as a starting point.

Have fun exploring how your distributions differ!

And if you have any question, don’t hesitate to get in touch.

How to quantify typical differences between distributions

In this post, I describe two complementary lines of enquiry for group comparisons:

(1) How do typical levels compare between groups?

(2.1) for independent groups What is the typical difference between randomly selected members of the two groups?

(2.2) for dependent groups What is the typical pairwise difference?

These two questions can be answered by exploring entire distributions, not just one measure of central tendency.


The R code for this post is available on github, and is based on Rand Wilcox’s WRS R package, with extra visualisation functions written using ggplot2. I will describe Matlab code in another post.


Independent groups

When comparing two independent groups, the typical approach consists in comparing the marginal distributions using a proxy: each distribution is summarised using one value, usually the non-robust mean. The difference between means is then normalised by some measure of variability – usually involving the non-robust variance, in which case we get the usual t-test. There is of course no reason to use only the mean as a measure of central tendency: robust alternatives such as trimmed means and M-estimators are more appropriate in many situations (Wilcox, 2012a). However, whether we compare the means or the medians or the 20% trimmed means of two groups, we focus on one question:

“How does the typical level/participant in one group compares to the typical level/participant in the other group?” Q1

There is no reason to limit our questioning of the data to the average Joe in each distribution: to go beyond differences in central tendency, we can perform systematic group comparisons using shift functions. Nevertheless, shift functions are still based on a comparison of the two marginal distributions, even if a more complete one.

An interesting alternative approach consists in asking:

“What is the typical difference between any member of group 1 and any member of group 2?” Q2

This approach involves computing all the pairwise differences between groups, as covered previously.

Let’s look at an example. Figure 1A illustrates two independent samples. The scatterplots indicate large differences in spread between the two groups, and also suggest larger differences in the right than the left tails of the distributions. The medians of the two groups appear very similar, so the two distributions do not seem to differ in central tendency. In keeping with these observations, a t-test and a Mann-Whitney-Wilcoxon test are non-significant, but a Kolmogorov-Smirnov test is.

typ_diff_fig1_ind

Figure 1. Independent groups: non-uniform shift. A Stripcharts of marginal distributions. Vertical lines mark the deciles, with a thick line for the median. B Kernel density representation of the distribution of difference scores. Vertical lines mark the deciles, with a thick line for the median. C Shift function. Group 1 – group 2 is plotted along the y-axis for each decile (white disks), as a function of group 1 deciles. For each decile difference, the vertical line indicates its 95% bootstrap confidence interval. When a confidence interval does not include zero, the difference is considered significant in a frequentist sense. The 95% confidence intervals are controlled for multiple comparisons. D Difference asymmetry plot with 95% confidence intervals. The family-wise error is controlled by adjusting the critical p values using Hochberg’s method; the confidence intervals are not adjusted.

This discrepancy between tests highlights an important point: if a t-test is not significant, one cannot conclude that the two distributions do not differ. A shift function helps us understand how the two distributions differ (Figure 1C): the overall profile corresponds to two centred distributions that differ in spread; for each decile, we can estimate by how much they differ, and with what uncertainty; finally, the differences appear asymmetric, with larger differences in the right tails.

Is this the end of the story? No, because so far we have only considered Q1, how the two marginal distributions compare. We can get a different but complementary perspective by considering Q2, the typical difference between any member of group 1 and any member of group 2. To address Q2, we compute all the pairwise differences between members of the two groups. In this case each group has n=50, so we end up with 2,500 differences. Figure 1B shows a kernel density representation of these differences. So what does the typical difference looks like? The median of the differences is very near zero, so it seems on average, if we randomly select one observation from each group, they will differ very little. However, the differences can be quite substantial, and with real data we would need to put these differences in context, to understand how large they are, and their physiological/psychological interpretation. The differences are also asymmetrically distributed, with negative skewness: negative scores extend to -10, whereas positive scores don’t even reach +5. This asymmetry relates to our earlier observation of asymmetric differences in the shift function.

Recently, Wilcox (2012) suggested a new approach to quantify asymmetries in difference distributions. To understand his approach, we first need to consider how difference scores are usually characterised. It helps to remember that for continuous distributions, the Mann—Whitney-Wilcoxon U statistics = sum(X>Y) for all pairwise comparisons, i.e. the sum of the number of times observations in group X are larger than observations in group Y. Concretely, to compute U we sum the number of times observations in group X are larger than observations on group Y. This calculation requires to compute all pairwise differences between X and Y, and then count the number of positive differences. So the MWW test assesses P(X>Y) = 0.5. Essentially, the MWW test is a non- parametric test of the hypothesis that the distributions are identical. The MWW test does not compare the medians of the marginal distributions as often stated; also, it estimates the wrong standard error (Cliff, 1996). A more powerful test is Cliff’s delta, which uses P(X>Y) – P(X<Y) as a measure of effect size. As expected, in our current example Cliff’s delta is not significant, because the difference distribution has a median very near zero.

Wilcox’s approach is an extension of the MWW test: the idea is to get a sense of the asymmetry of the difference distribution by computing a sum of quantiles = q + (1-q), for various quantiles estimated using the Harrell-Davis estimator. A percentile bootstrap technique is used to derive confidence intervals. Figure 1D shows the resulting difference asymmetry plot  (Wilcox has not given a clear name to that new function, so I made one up). In this plot, 0.05 stands for the sum of quantile 0.05 + quantile 0.95; 0.10 stands for the sum of quantile 0.10 + quantile 0.90; and so on… The approach is not limited to these quantiles, so sparser or denser functions could be tested too. Figure 1D reveals negative sums of the extreme quantiles (0.05 + 0.95), and progressively smaller, converging to zero sums as we get closer to the centre of the distribution. So the q+(1-q) plot suggests that the two groups differ, with maximum differences in the tails, and no significant differences in central tendency. Contrary to the shift function, the q+(1-q) plot let us conclude that the difference distribution is asymmetric, based on the 95% confidence intervals. Other alpha levels can be assessed too.

In the case of two random samples from a normal population, one shifted by a constant compared to the other, the shift function and the difference asymmetry function should be about flat, as illustrated in Figure 2. In this case, because of random sampling and limited sample size, the two approaches provide different perspectives on the results: the shift function suggests a uniform shift, but fails to reject for the three highest deciles; the difference asymmetry function more strongly suggests a uniform shift, with all sums at about the same value. This shows that all estimated pairs of quantiles are asymmetric about zero, because the difference function is uniformly shifted away from zero.

typ_diff_fig2_ind_linear_effect

Figure 2. Independent groups: uniform shift. Two random samples of 50 observations were generated using rnorm. A constant of 1 was added to group 2.

When two distributions do not differ, both the shift function and the difference asymmetry function should be about flat and centred around zero – however this is not necessarily the case, as shown in Figure 3.

typ_diff_fig3_ind_no_effect

Figure 3. Independent groups: no shift – example 1. Two random samples of 50 observations were generated using rnorm.

Figure 4 shows another example in which no shift is present, and with n=100 in each group, instead of n=50 in the previous example.

typ_diff_fig4_ind_no_effect2

Figure 4. Independent groups: no shift – example 2.  Two random samples of 100 observations were generated using rnorm.

In practice, the asymmetry plot will often not be flat. Actually, it took me several attempts to generate two random samples associated with such flat asymmetry plots. So, before getting too excited about your results, it really pays to run a few simulations to get an idea of what random fluctuations can look like. This can’t be stressed enough: you might be looking at noise!

Dependent groups

Wilcox & Erceg-Hurn (2012) described a difference asymmetry function for dependent group. We’re going to apply the technique to the dataset presented in Figure 5. Panel A shows the two marginal distributions. However, we’re dealing with a paired design, so it is impossible to tell how observations are linked between conditions. This association is revealed in two different ways in panels B & C, which demonstrate a striking pattern: for participants with weak scores in condition 1, differences tend to be small and centred about zero; beyond a certain level, with increasing scores in condition 1, the differences get progressively larger. Finally, panel D shows the distribution of differences, which is shifted up from zero, with only 6 out of 35 differences inferior to zero.

At this stage, we’ve learnt a lot about our dataset – certainly much more than would be possible from current standard figures. What else do we need? Statistical tests?! I don’t think they are absolutely necessary. Certainly, providing a t-test is of no interest whatsoever if Figure 5 is provided, because it cannot provide information we already have.

typ_diff_fig5_dep1

Figure 5. Dependent groups: data visualisation. A Stripcharts of the two distributions. Horizontal lines mark the deciles, with a thick line for the median. B Stripcharts of paired observations. Scatter was introduced along the x axis to reveal overlapping observations. C Scatterplot of paired observations. The diagonal black reference line of no effect has slope one and intercept zero. The dashed grey lines mark the quartiles of the two conditions. In panel C, it would also be useful to plot the pairwise differences as a function of condition 1 results. D Stripchart of difference scores. Horizontal lines mark the deciles, with a thick line for the median.

Figure 6 provides quantifications and visualisations of the effects using the same layout as Figure 5. The shift function (Figure 6C) shows a non-uniform shift between the marginal distributions: the first three deciles do not differ significantly, the remaining deciles do, and there is an overall trend of growing differences as we progress towards the right tails of the distributions. The difference asymmetry function provides a different perspective. The function is positive and almost flat, demonstrating that the distribution of differences is uniformly shifted away from zero, a result that cannot be obtained by only looking at the marginal distributions. Of course, when using means comparing the marginals or assessing the difference scores give the same results, because the difference of the means is the same as the mean of the differences. That’s why a paired t-test is the same as a one-sample test on the pairwise differences. With robust estimators the two approaches differ: for instance the difference between the medians of the marginals is not the same as the median of the differences.

typ_diff_fig6_dep2

Figure 6. Dependent groups: uniform difference shift. A Stripcharts of marginal distributions. Vertical lines mark the deciles, with a thick line for the median. B Kernel density representation of the distribution of difference scores. Horizontal lines mark the deciles, with a thick line for the median. C Shift function. D Difference asymmetry plot with 95% confidence intervals.

As fancy as Figure 6 can be, it still misses an important point: nowhere do we see the relationship between condition 1 and condition 2 results, as shown in panels B & C of Figure 5. This is why detailed illustrations are absolutely necessary to make sense of even the simplest datasets.

If you want to make more inferences about the distribution of differences, as shown in Figure 6B, Figure 7 shows a complementary description of all the deciles with their 95% confidence intervals. These could be substituted with highest density intervals or credible intervals for instance.

typ_diff_fig7_dep3_decile_plot

Figure 7. Dependent groups: deciles of the difference distribution. Each disk marks a difference decile, and the horizontal green line makes its 95% percentile bootstrap confidence interval. The reference line of no effect appears as a continuous black line. The dashed black line marks the difference median.

Finally, in Figure 8 we look at an example of a non-uniform difference shift. Essentially, I took the data used in Figure 6, and multiplied the four largest differences by 1.5. Now we see that the 9th decile does not respect the linear progression suggested by previous deciles, (Figure 8, panels A & B), and the difference asymmetry function suggests an asymmetric shift of the difference distribution, with larger discrepancies between extreme quantiles.

typ_diff_fig8_dep4_larger_diff

Figure 8. Dependent groups: non-uniform difference shift. A Stripchart of difference scores. B Deciles of the difference distribution. C Difference asymmetry function.

Conclusion

The techniques presented here provide a very useful perspective on group differences, by combining detailed illustrations and quantifications of the effects. The different techniques address different questions, so which technique to use depends on the question you want to ask. This choice should be guided by experience: to get a good sense of the behaviour of these techniques will require a lot of practice with various datasets, both real and simulated. If you follow that path, you will soon realise that classic approaches such as t-tests on means combined with bar graphs are far too limited, and can hide rich information about a dataset.

I see three important developments for the approach outlined here:

  • to make it Bayesian, or at least p value free using highest density intervals;

  • to extend it to multiple group comparisons (the current illustrations don’t scale up very easily);

  • to extend it to ANOVA type designs with interaction terms.

References

Cliff, N. (1996) Ordinal methods for behavioral data analysis. Erlbaum, Mahwah, N.J.

Wilcox, R.R. (2012a) Introduction to robust estimation and hypothesis testing. Academic Press, San Diego, CA.

Wilcox, R.R. (2012b) Comparing Two Independent Groups Via a Quantile Generalization of the Wilcoxon-Mann-Whitney Test. Journal of Modern Applied Statistical Methods, 11, 296-302.

Wilcox, R.R. & Erceg-Hurn, D.M. (2012) Comparing two dependent groups via quantiles. J Appl Stat, 39, 2655-2664.